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o "1 area computer utmk simulations are uhomtll
Markovian in :hit :lio underlying stochastic process cannot be modeled as a

Markov chain with countable state space. Ue restrict atteation to local

" network iimhtiélil with an underlying stochastic process that -cy_r rep-

.rai-hted i;aa/géﬁernlim semi-Markov process (GSMP). Using “new better

than used distrﬁutim} assumptions and sample path properties of the
GSMP, we ptbvﬁh 2 gconl:ricb trial critorioi; for recurrence in this
setting. We also '_provtdc conditions which ensure that a GSMP is a regener-
ative process aud that the expected time batween mmnzion points 1.1
fiuite. Study--tau uuuuon procedures for ring and bus network u-n-

lati.ou follow fro- thue results.
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o.g;, Ighthsiet anid Shedler (8,9, Loucks, Mamscher, and Prefas [121) are tabereatly
non-Markowian $n:the sense thit the underiying stochastic process cannot be modeled as s

Maskov chain with countabie state space. . Fdllowing (8] we restrict stteation to local
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For speeific models, however, it is uml_vu 4 determine conditions (distributionsl
m)mm;mmmmm-mmamumnanm.

A mbtrhh"w;lminltlmhlhhuammmcﬁuﬂmmta
stochastic process {X():120} with right-continuous and Mn constant sample paths
um&mms l..ct lT.mwlhuMmmdmumu
tmultlon times !or m:)-uo; The process {X(T,):n20} hits state 5'€ § infinitely often
wml probability one providul that P{X(T,) = ' | X(T, ) o ..Y(To)hl a.s. for soms 8>0.
This geometric trisls recurrence criterion avoids the often unreslistic "positive density"
sammptions oesded fn srguments (cf., [7]) besed cu gemsral state spavs Markev chain
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h’m.w,iﬁ.m-pn properties of the asur, we provids conditions which
peresit appiieation.of-the geometric:trisls recureence criterion in the Gme settidg. Our
sppecesh i e postulate-the suistesce of & distinguished random time in the interval
(7,.+7,) snd:s seb.of dintinguished cvents determined by the state of the systsm at the

distinguished time such that X(T,) = ¢' if each of the distinguished events occurs "soon.

enough” befors time 7,. We show that {A(7,):n20} hits state s infinitely often with
probabilisy one if the clock setting distributions associated with the distisguished events
have "niw better than n]nd'; distributions and satisfy a "positivity" -condition. We aiso
'm.«mommmmonmmmuomammwmhmmm
Mnum:t which [X(T) nwl hits state s’ mumﬁmpoinutormm
(X(t) 130} and that the expecud time betwun upnerauon polnu is finite.

Heuristically, 3 0smp (Matthes (13], Konig, Matthes and Nawrotzki {10}, (11])

maves from stats to state in sccordance with the occurrence of events associated with the
accupled ststs. Motm .several possible eicnu associated with & state compete to
trigger the next transition s5d esch of these events has its own distribution for
determining the next stats. At each state transition of the Gsmp, new events may be
scheduled. For mh of these new events, a clock lndicmngpth‘c tlmo uﬁul the event is
scheduled to occur il set aecordlng to an independent (stochastic) mechanism. If a
Munmmwumumuonmnmum with the next stats, its

elock continues to run; if such an event is not nsoclated with the next state, it is

abandoned.

Following Whitt [16), formal definition of a asmp is in terms of a general stats
spece Markov chain (Cemec) which describes the process at successive epochs of stete
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m 0. Lat S be a finits or countable set of siates and E = fe,,¢,,....¢)} be a finite sot

of events. For s€ S, E(s) denotes the set of all events that can occur when the Gsar is in

state . Whhthprmlllnmﬁf:.'iﬁeoecurmofanemt e€ E(s) triggers a

transition to a state 5. We denote by 5(s'ss,¢) the probability that the new state is s' '

given that event ¢ triggers a transition in state s. For each i,(s-nd ¢€ E(s) we assums
that p(-i5,¢) is a probability mass functica. The actual event e€ E(s) which triggers s

transition in state s depends on clocks associated with the events in £(s) and the speeds at

which thess clocks run. Each mhclock records the remaining time until the eveat

triggors & state transivion. . We:denots by 1, (20) ‘the deterministic rate at which the
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0 ~ clock ¢,, smociated with event ¢, runs in state 5; for each ¢€ S, 7y =0t ¢f K(s). We

% : am- tlm r,,>0 for some ¢,e E(s) (’l'ypkally in sppﬂatlou. all speeds 7, are oqul to ;;
" ons. Thou are, hovevcr. mideh in wtieh M othier tm uaity ss mll as

w spuds m connnhnt For emph, zero speeds are nudul in quulng

sysunn with service interruptlons of tllc pmmptlvc-resume typs; cf. Shedler and

Southard [14] )

For s¢ S define

C(s) = {(cynicp): ¢, 2 0 80d ¢, > O if and only if ¢,€ E(s);

@) cplec) tocimiwithcepg, S0k

The conditions in Equation (2.1) ensure that no two events simultaneously trigger a EZ::
,( ,\-,

transition (as defined below). The set C(s) s the set of possible clock readings in state s.

The clock ¢; and event ¢, are said 0 be active in state s if ¢,€ £(s). For s€ S and c€ C(s),
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wheve.¢z;) istaken tobe + » when 7, = 0. Also st
@3 - LT e m () = - £ (8,6)ry €€ ENS)

- and

@O =0 = rruch that 0,6 50) and €](s4) = O

Beginming in state s with clock vector c, ¢'(s.) is thé time 1o the next state transition and
'(s.c) 15 the index of the unique triggering evant ¢’ = ¢ (s,0) = ¢, .

" Ata mn;.., from state s to state s triggered by svent ¢', new clock times are
mau‘for each c"-ve' N(:';).c‘) - 8()')-(8(3)~{0']).’ ’Tlnf distribution Iunctioh of such a
new clock time is denoted by F(:is'¢s.e") and we assume that F(0:s's'.e’) = 0. For
¢ €O0(s'10,6") = E(s)N(E(s)-{e’}), the old clock reading is kept ‘after the transition. For

¢ € (E(s)-fe’})-£(s"), event ' ceases to be scheduled after the transition.

Next coasider a assmc {(S,,C,):n20} having state space

2 = U (islx )
s€S
s0d representing the state (S,) and vector (C,) of clock readings at successive state
transition epochs. (The Ah coordinate of the vector C, is denoted by C,,) The
transition kernel of the Markov chain {(S,,.C,):n20} is

a.9) - MG = pe) [T Papsene’) [T 150D,
0 ENG") € 00"
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MM'WW 06 < 03¢, and

t praes e A - {:lx{(cl,. ,c,,)e C(s): ¢ Sa for € E(:)}
h[ mmnummaxg%twwmmmmm:ﬂmm

m:iuthclockmhtedwithemt e,es(:) set to a value in [0.4,].

‘( | . Flallly.tlu d lsa pleeewln constant continnous time prouueonumcud from
the assec us,.c,).nzo} in the fouowlumr Set g = 0 and denots by £, the time
dtbnhmmuu.no (Wcmtlm

P{mr,,- +6I(W}-lu. ,

m.nmmmwo.c,)) Tlloant

B

@ . M= Sy
where
| Jm) - max (:n;zo:t.ts'd.

The m {X():130] defined by Equation (2.6) is a aswr. We assume from tiow on that
alh‘pdu” are oqual to 1. |

The characteristic property of a regensrative stochastic process (Smith [15]) is that
there exist random time poiats, referred t0 a8 repaneration points or regeneration limes, at
ihlcl thnm ptoingmumuy restarts. The esseace of regeneration is that the
nduﬂuolthmhacjch(l&..htmmtn successive regeneration points)
' " is s probabilistic replica of the process in any other cycle. In the presence of mild
MMM s regenerative stochestic process {X(1):120} has a limiting
distridution (X{DeX as /ow) provided thet the expected time betwesn regeneration

Yy, a
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points is finits. Furthermore, the regenerative structure ensures that the behavior of the t -
process in s cycle determines the expected value of a function of the limiting random
s s'_*-:
variabls X as a ratio of expected values. These resuits have important implications for E:: -
simulation and are the basis for the regenerative method for simulation analysis; see
' Crane and Iglehart [3].
(2.1) DEFINITION. The real (possibly vector-valued) stochastic process {X(/):120} is a
4 regenerative process in continuous time provided that:
(1) there exists a sequence of stopping times {7,:k20} such that {7, ,-T,:k20} are T
independent and identically distributed; .
(ii) for every sequence of times 0<f</4<...<s, (m21) and k20, the random vectors .‘f:f:"
‘.';,j.:
{X(t)),....X(1,)} and {X(Ty + 1),...X(T; + 1,)} Bave the same distribution and the
processes {X(1):¢<T,} and {X(7} + 1):r20} are independent. et
: Recurrence properties of the underlying stochastic ptoeou'ol s discrets-event :
simulation are needed to establish estimpion procedum based on regenerative processes. ]
Lemma (2.8) is a special case of a generalized Borel-Cantelli lemma dus to Dood ,
(4, p. 324); see [8, Lemma 4] for an elementary proof using a "geometric trials" &
g SANED
; S
(2.8) LEMMA. Let {¥,:120} be a sequence of random variables defined on a probability '»__
space (8.5,7) and taking on values in & set, S. Let s'€ 5. Suppose that there exists 80
such that : 3
’ £
PlY, =4 Y Yol 2 82 T
: .*'“;':'-.‘.’
INOY
for all #2l. Thea P{Y, = ' 1.0.} = 1. f.,
‘:‘. -
R R R R R R R A R,
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s simulstion returns infinitely oftes to a fixed state. Specifically, let {X():/20} be & , i

stochastic process with right-continuous and piecewise constant sample paths aand &y

RREVEVET SR Y

. countable state spece, §. Let 5'¢ S and supposs that {7,:n20} is an increasing sequence
}’; of finite (?‘.(- as) m transition times for {X(£):t20} such that :‘
rmr,)-slx( DAY 28 22
I . ‘ g
. for some 8>0. Then PLX(T,) = ¢ .o} = 1 by Lemma (2.8) (with 7, = X(T,)). %
5 | ‘ 2
Using "new better than used” distribufional assumptions and the sample path
9 structure of the Pf“m- Proposition’(2.11) provides sufficient conditions for recurrence P:‘
3  in the.aswe setting. :2
(2.9) DEFINITION. The distribution F of a positive random variable 4 is new berser than
b PiA> x4+ ylA> )y} s PlA > x} ~:
5 5
‘3,‘ for all x20. :

Ses Barlow and Proschan {1] for a discussion of NBU distributions. Note that every . *
e increasing failure rate (IFR) distribution is NBU. - Also, if 4 aod B are indspendent £
random variaples with NBU distributions, then the distributions of 4 + 2, min (4,8), e

% ' ,:'.':';'r
: snd max (4,5) sre NBU. i
5 o
: Let {X(#):¢20}) bs 3 asmr with {inits stats space, S, and event set, E. Supposs that
& {T,:n20} is an tncreasing sequence of finite (7,<w a.s.) state transition times such that X
# i
for some ¢’ € B and 5°GS: Ty = 0 and N
K PR
SN T, BT e R T T el R ey
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(210) T, =iaffr> T, : attime ¢event ¢ triggers a transition in some state "¢ 5°},
n2l.

Let §,¢S. Proposition (2.11) postulates the existence of a distinguished random
time (77) in the interval [T, ,.T,) defined by Equation (2.10), and s set (E*(s?)) of
distinguished events determined by the state s7 of the system at time 77 such that
X(T,) = 55 when each of the distinguished events e¢f(s}) occurs prior to some tims
T? + R, (s?) (OT*). The proposition asserts that {X(T,):n20} hits state s, infinitely
often with probability one if the clock setting distributions associsted with the
distinguished events are NBU and satisfy a "positivity” condition which guarantees ths
existence of >0 as in Lemma (2.8). |

Let {T7 :n20} be a sequence of state transition times and denote the stats space of
{X(T7):n20} by S*. For s*eS*, lot
E*(s*) = {6} 6"ty (D} € EG™)
and set

E*t = |J E*GYH.
s*€s*

When X(77) = s* we denots by S, ,(s*) the latest time less thanor equal to 77 at which .
the clock associsted with event ¢ (s*) was set, and by 4, ,(s*) the setting on the clock
at time S, ,(s*).
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(2.11) PROPOSITION. Assume that there exist state transition times {T7":n20} and for

PRI od SR
FL A S CRCRa

\ steS* event sets E*(s*) and identically distributed strictly positive random vectors
(R, 1(5P)0ecsR 5, +)(sT)),  independent of {4, (X(T, )),...,AM(X(T:))(X(T,'," D} and
| {X():0s¢5T* ], such that: -
[\‘ () T, ,sT; as. and for xo.x,,....x, , €S and s* € S+,

';;2

P{X(T,) = s, X(T]) = ¥, X(T, ) = x, ... X(Tg) = xo} o

2 P{S,;(sT) + 4, (%) S T 4 R, (%), k = 1,2,...k(s*);

X(T7) = s*, X(T, ) = x, 4,..X(Tg) = xo};

. e TRENO ORI LA
. . L AR
. P A It

(ii) for all e* € E*, the clock setting distribution F(;s',e*,s,¢) = F(-;e*) and is NBU;

(ili) there exists 8>0 such that for s* € S* E

8(s*) = PiAk(:+) S R, (s1), k = 1,2,....k(sT)} 2 8,

where the random variable 4,(s*) has distribution F(-ief (s*)) and {4,(s*),....4,+) (s}

are mutually independent and independent of (Rn.l("+)""'kn *(_'+)(s+)).

Then

PIX(T,) = 55| X(T, ). X(Tp} 2 8 a.s.

30 that P{X(T,) = 55 i.0.} = 1.
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Proof: Lot s*€S* and xgu..ix, € 5. Lomma (4.6) of the Appendix shows that -

'P{S,...'(:*) €A, STy V+ Ry k= 1.2,....k(s*); ‘ f“"
XTI = s, X(T, ) = X, 40 X(Tg) = %o}

)3
(2.12) 2 8 P{X(TY) = s*, X(T, 1) = %, 4 X(TQ) = Xo}- 43

Using Equation (2.12), ..

PEX(TY = sy X(T, g) = Xy g XUTQ) = %o} i

S P{X(T) = sy X(T3) = s*, X(T, ) = %, g K(TQ) = %o}
s*es* _ et

2 T OPIS ) + A S T+ RN k= 1,240,k );
sTEST - N

X(T:) -t X(T"_‘) -X _l....,X(To) - xo}, "5'5

2 S 8 PIXT}) = 5t K(T, ) = Xy g X(TQ) = xo}
#es#

- 8 PIX(T, ;) = X, 10 X(Tg) = Xo}-

It follows that |

P{x(ru) - ’;)‘x(rn.i)---wx(ro)} 28 as. 4:‘-:'_

and Lemma (2.8) implies that P{X(7,) = lol=10

. - v’.- - - - N‘ .
mﬁm%\ ' -.!.l”&.@ h~ " .n’j"'.‘:h'_- “\' 'n ~a ..;“_-.‘l 1..4,.4“ -. :L*_‘A\L._l“lv-\ “ WP "-\“ 5 .Q- “L\-A--J A\A _t




. Proposition (2.13) gives a set of conditions on the building blocks of a Gsur which
mmtmmuwuwmmtmewmwmmnm
points is finite.

(2.13) PROPOSITION. Let {T,:n20} be an increasing sequence of stopping times that
are finite (7,<w a.5.) state transition times as in Equation (2.10). Suppose that there
exists s,59€ S and 8>0 such that

(2.14) P{X(T,) = 5| X(T, 1).-..X(Tg)} 2 8 as..

Also suppose that for 5" € 5°, (i) the set O(sgis’e) = BN (E(s")-{e’) = ¢, (1) the set

N(spis' ') = N(syisie’), and (if) the clock setting distribution
F(i5,6' 3 ') = F(:i50,¢ 5,¢) for all ¢ € N(syis ). Then {X(1):120} is a regenerative

process in continuous time. Moreover, if

EiT, - TJsc<e

for all n20 then the expected time between regeneration points is finite.

Proof: Using Lemma (2.8), Equation (2.14) implies that event e triggers a transition to
state :;, from some state s €S’ infinitely often with probability one. Furthermore, at
such a time 7, the only clocks that are active have just been set since O(s'o;:'.¢°) = ¢ for
all s’ S". The joint distribution of X(T,) and the clocks set at time 7, depends on the
past history of {X(/):t20} only through s, the previous state s, and the trigger event ¢’

Sincs the new events and clock setting distributions are the same for all s°, the process
{X():020} probabilistically restarts whenever {X(T,):n20} hits state s,

To show that the expected time between regsneration points is finite, assume for
conveaiencs that X(7,) = X(0) = 5. Set X, = X(T)) and D, = T, ,-T,, #20. Observe
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3
R that the random indices B, such that X, = X(T}) = sTorm a sequence of regeneration =
points for the process {(X,,D,):n20}; this follows from the fact that the process (), :n21} 3
< starts from scratch when X(7, ) = s5. Let 7 = B, -By, k21. The 7, are i.id. ss v, and -
() b

. the argument in the proof of Lemma 4 in [8] shows that
X £
» " «d
o8 Pir;>n} <(1-8) £
_‘ so that Efr;}<e. Thus the expected time between regeneration points for the process H

2 {(X,,D,):n20} is finite. Since Efr;}<w and Equation (2.14) ensures that r, is aperiodic,

NGO
PSSR AN
AL I DS Sa4
SASART LS T
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SRR

(X,.D,)»(X,D) as n+e. Using the continuous mapping theorem we have D, D 33 nee

X and, since D20 and E{D, }sc<w,
5 B
N E{|D|} = E{D} < lim E{D,} sc< = 8
.-4 Aee :I\:v
i by Theorem 25.11 in (2]. Since 7, is aperiodic, Efr,}<w, and E{| D | }<w, g
: .
.‘ f|°l
3 E z D" .4
Jj=0
o E{D} » ———— RS
st N
’ Sy
- so that ‘
. N
-
'.“ “;:..‘
: ESS D, @ <ew B
2 Jjm0 ,"';
' and the expected time between regsneration poiots for {X(1):120} is finite. O —
:
P 2%
X Note thst the state transition times {7,:n20} defined by Equation (2.10) are necessarily 3
2 ' ' iy
3 _stopping times if for all s';s" € § T
" 20y
(2.18) e = ¢ whenever p(s";s'.¢) > 0 and p(s":s',¢) > 0. ’S
' %
» “‘\:'.
\ e
A y.'-:\
f p.:_\
% o)

,h‘y:ﬁ‘i; o ' .n“"’5’br;;"\:‘:.;';"l;;‘NY;\'..P'-"'-""'\'." "!‘;”;‘.".,~-."..¥ .'.. \. __-_...-._‘ ..v .‘v' ., . LR B I
T B / e b ) I, R g y AR AN . S Ao



.
PRI A 45

5 -
LM P4

ks

o ) e
.
Cate 4w

-

AR B

L LG M TR e e I 1 P N W e T il i R S T A e B g e Y g B Sl A Y e o B DI U gl PPl € ok P ke Cup Sy k-
o

3. RING AND BUS NETWORK MODELS |
The following examples illustrate the use of the Gsmup model as a formal

specification of a discrete-event simulation of a local area computer network and the

: appliation of Propositions (2.11) and (2.13). These results are also applicable to the

token ring and collision-free bus network models in Examples (2.7) and (2.9) of [9].

(3.1) EXAMPLE (Token ring). Cmﬁw a unidirectional ring network having a fixed
number of pores, labelled 1,2,..., in the direction of signal propagation; see Figure 1. At
eaéh port message packets arrive according to a random process and qh;u extemlly A
single control token (denoted by T in Figure 1) circulates around the ring from one port to

the next. The time for the token to propsgate from port N to port 1 is s positive

constant, Ry, and the time for the token to propagate from port /-1 to port j is a positive

constant, Rj_,. J = 23,....N. When a port observes the token and thers is a packst queued
for transmission, the port converts the token to a connecsior (C) and transmits a packet
tonm by the token pattern: the token continues to propagate if there is no packet
queued for transmission. By destroying the connector prefix the port removes the
transmitted packet when it returns around the ring. Assume that the time for port j to
transmit a packet is a positive random variable, Lj. with finite mean. Also assume that
packets arrive at individual ports randomly and independently of each other; i.e., the time
from end of transmission by port j until the arrival of the next packet for transmission by
port /1s 8 positive random variable, 4,, with finite mean. Note that there is at most one

packet queued for transmission at any time at any particular port.

Set

(3.2) X() = (Zy(D,e... Z2p(0:; M) (D),
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where

. | iftlmoha}pnchtquudfortunsmiuionatponj at time ¢
ZL) = : . .
f 0 otherwiss

. J i port jis tranamitting s packet at time ¢
M(f) = ' '

0 if no port is transmitting a packet at time ¢

N(¢) = 1 if at time 7 port N is transmitting a packet or the token is propagating to port 1,
and N(¢) = j if at time 7 port /-1 is transmitting a packet or the token is propagating to
port j, j = 2,...,N.

The process {X(:):r20} defined by Equation (3.2) is a asmp with a finite state space,

S, and event set, £ = {e,,....e5,,}, where ey, = "observation of token," ey, = "end of

~ transmission,” and e, = "arrival of packet for transmission by port j," / = 1,2,...N. For

s = (2,...2im;n)€ S, the event sets E(s) are as follows. The event "end of
transmission” € E(s) if and only if m>0 and "observation of token" € E(s) if and only if

m=0. The event "srrival of packet for transmission by port ;'€ E(s) if and only if
zj =i ‘M m,j-

If e="end of transmission,” then the state transition probability p(s';s,e) = 1 when
s = (25,...2pimm + 1) € S with 0<m<N and 5' = (zy,...,2y:0:m + 1)
and when
s = (2),...2yiN;1) €S and 5 = (24,....2)i0;1).
If e="obssrvation of token," then p(s’is,e) = 1 when

8 ® (2ypensly gl 1 rees2yi0IN) € S With ACN and &' = (2.2, 10,2, oy 2pitint & 1),
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v
2
ol |

= (:l'nc.:N“'l;o:M¢ S and " - (lp-...l'.'ﬂ'.ﬂtl).

X

A

PAs O &5

whea

3 ® (202 1 02y g0 o2yiOIN) € S with a<Nand s’ = (2y0ersZy g 0e2y 4 yoreeodpiOin 4 1),

and whea ' i

s = (5o 2y 1 0:0:N) 204 & = (3y,....2y 0:0:1). Wi

el
Y

4 If e="arrival of packet for transmission by port /," then p(s';s,¢) = 1 when | S

gl s= “‘"""j—l'o';‘j#l"“"ﬁmn + 1)€ S with me/ and O<m<N : ;:.?:.
: oA
4 3

" - (Il,...;ll.l.;.ll‘,‘.....zn;ﬂl;m + l). ‘ L'.“

P aa Al AL,
e
'l.(I!

when s -

8 = (2y50003; 100341002y Ni 1) € § with Nosj and = (2102 40120 gore-2yiNi1), " .
3 R
7_ and when i
,. $ = (2)0002; 100214102y 0in) € S and S = (2y0i2p od o2y e 2yiOim). i'\“
3 e
€ if.;*.-
.8 ‘. _\
All other state transition probabilities p(s';s.¢) are equal to zero. Fe
* ' \‘:‘.
i | N
b The distribution functions of new clock times for svents ¢ € N(s'is,e’) are as P
?
; follows. If ¢ = "end of transmission” sod s = (2,,....zyim:n), then the distribution =
‘ ':\‘
A fenction Fxis' ' se’) = P{L sx}. If ¢ = "obesrvation of token" and s’ = (zy,....2ysm:n), N
Py -:::
thea the distribution function FUxis'w¢' ') = Ly )(x) If a>1 and equals 1;p _\(x) if i
B () .,";\
’ - -,
3 =
i:-s!! A * ' 97_ R ,_»Ix; ~—:'\;'" ’:;,' .,. A A N G L Ly .~.;-‘.“-'.;1'.;-.'.;',‘-'."‘-' ‘..'.:_.' A " A VI SN T .‘:‘
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a=1. I ¢ = "arrival of packet for transmission by port j," then the distribution »
B function Fixis's' s’} = PUA,Sx). =
g | , 3
¥ As an application of Propositions (2.11) and (2.13), take 55 = (0,1,...,1;1;2). Let ‘
f' ¢ = "obssrvation of token" and §" = {(z),....2yi0:1) € 5} s0 that T, is the nth time at ‘
% which port 1 observes the token, n20. Observe that 7, <= a.s. since E?-
(48 N |
N} 3.3) EiT,-TJsRy+..+Ry+ 3 EiL}<ew
¥ jot i
ar> "'-'
] :"'
b for all nal. il
.
5
Let 77 be the first time after T, , that the token lesves port N so that S* = §°. 8
] : &3
3 For % = (gf,.cfimTin)eS*, st No*) = 2] (s") =0} and et e
4 E*(s*) = {e)€ E:jeJ(s*)] 30 that E* = {e,€E:/sN). Taks R, ,(s") =Ry for all !

§ k = 1.2,..k(s*) ad s* € S*. Assume that the distribution of 4, is NBU and that
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for j = 1,2,....N 50 that
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Then P{X(T,) = sy i.0.} = 1.

‘ A transition of the process {X\:):t20} defined by Equation (3.2) to stats s, can -'
.: occur whea event ¢ is the trigger event oaly if ¢ occurs in state s* = (1,....,1,0,1) and in ""
t this cass the st O(spis ¢ ) = ¢. Since Equation (2.15) holds and P(X(T,) = & 1.0} = 1, \
i: the Successive times 7, at which ¢ triggers s transition (in state s*) to state 5 are ‘%
stopping tishes sud regensration poiats for the prosess {X():/20). The expected time %E
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Wwtwetn thess sugemeration pulats is fislts by Bquetios (3.3). At these time poiats there
ha““h“um%dmlm%da
packet.

(3.4) EXAMPLE (Collision-fres bus network). Cousider a bus sstwork (Eswaran,
Hamacher, sad Shedler (S]) with N ports, sembered 1,2,....N from left to0 right; ses
Wgure 2. Mossege pocher traffic on the passive bilatersi bus is transmitted/recelved by
port j at tap B()). nu«mpmm‘w»mmmuumm
muuwimmh'mjmmp-nop.sm.ummmm-/hp The sigaal P(),
undmonqw uppodnthemtrolwiuinputtopmjhthinclmmdth
undﬂip-ﬂoplofall portstotholcftofpoﬂj Dwoubyfthnd—to—udhl

mﬂumy. [Fmtnmmrmuﬂymhthnd-wm |

dchy_ptu s m!l (ﬁxed) qmmy.] Dulou the m-al mloa delay along the bus
between port  and port / by TU\), i/ = 1.2,...N. Thus, TU) = TUH<T for all iy and
TS + TUK) = TUiA) for all i¢/<ck. (We assums that TUHwTIA,) for distinct ik sod
sll /) Let R()) de the propagation delay (including gate delsys) along the coatrol wire
from port j to post N, j = 1,.2,....N; thus, R(1)2R(2)2...2R(M) = 0. Denote by R(/.) the
propagation delay along the control wire from port i to port j. We assume that signal
propagation aloag the control wire is slower than along the bus and that delays alomg
shorter sections of each path scale proportiomally; Le., R(1)>T and RUN>TU(L) for ail
.

Specification of distriduted control scheme 47 is in terms of an algorithm for aa
WM} Mu(tumwwﬁwmm"wmnmmd
mwnmjuhmqmoxmuuy Upon completion of this
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excoution of $he aigorithm, ¥he of say such packets immedistely becames availsbie to
m;wwummmﬁmmm

Algovishen A1
*. StSHrel
®  Walt for a time interval R() + T |
.®  Wait until the bas is cbesrved (by port ;) to be idle AND P(/)=0; then start
transmission of the packet, simultsnecusly resstting 8(/) to 0.

FxMty.wm-mt'Mmﬁu“vmpehtinquuntnei
port. Speiﬂaﬂy.mpponthtthcttmtmuddtnnﬂdubypoﬂjmﬂm
ammdaumwmfmmmmbymjhapdunmm A, with
l‘h!unlu. Akonpponﬂmthctlmtmmjtotrwamhnpodun
mm&. I.I.vith ﬁnltemmand(lothtAlgoﬁth.AZd[S]m
Wdlﬂp‘ckcu) such that P[Ljsk(l)q- T} = 0.

Set
(3.’) W(‘) - (WI(‘)""'WN('))'

M ';t)%quls 1 {f «t time ¢ port / has set its flip-flop but has not yet completed the
n(n-c-rm..qm_uzumjmmlmamk(n-n-rmtmmn&m
transmission, equals 3 if port / is transmitting, and equals 4 otherwise. Next set

o0 ) = (Vy(O...Up(D),
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whers ¥,,() squals 1 If 30d caly If S(k)=1 st time +R(k,), a5 squals O ctharwise.
(Port J abesrves P()=1 ot time ¢ 1 0d cnly If ¥, () = 1 for some £<4) Finally, st
| Z() = 1 1f some port is tracsmitting af time ¢ and this port started transmission whea it
Mnddwoa.m Z()) = 0. Then set
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e B _
-
ke
KX

A VIR
X ] st O

AT,

e8 XD = (MR,

3
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S e

¥ The ochastic process {X():r201 definéd by Bquatica (3.5) Is a Gser with a finfte state
spece, S, -admnt st, K. mmmintﬁmtm “end of transmission ﬁjm;."

"widd of wailt for R() + T." "sétting (to 1) of flip-flop by port /" "obstvation by port J
of start of tranemissloit by port £9/," "cbsérvation by pot J of end of traniikission by

pmkﬁ.'”mhymdedtmmbymkﬂmulnd 3
Mumw."_"omuubym/dmmuu (to 1) of flip-flop by port |
k o the loft," and 'mm»m;umnmuqmo)a.mp-nupuymkm s

’,y{&: B

Yy 1 L A
TR G

TR HIKA

:‘; | the lft" /= 1.2...M. Foe s = (e W59, 1o Py 0.1 € S Lhe evaat sets E(s) E\
% are as follows. The event set £(s) contains "setting (to 1) of flip-flop by port /" if and 2

5 caly if w, = 4. The event "end of transmission by port /" € £(s) If and oaly If w; = 3.
i The eveot "ead of wait for R() + 1" € £(s) if and only if w, = 1. The eveat "observation E’
g ‘ ; '.:'
% ~ by port J of start of transmission by port k"€ E(s) if and only if (1) w, = 3,z = 0, and "3

4k or (H) w, =3, 2= 1 and sither u; =0 or u, = ! for some I between k aod /. The
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event "obesrvation by port / of end of transmission by port k" € E(s) if and cnly if u, = &

L': .“.".'1*‘““’ z-Oﬁwﬂ3fwmlstM/mk The event
i L | L R
b “cbsstvatitn by port J of snd of transmission by port kys/ and start of transmission by w51
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i "observation by port j of setting of flip-flop by port k to the left" € E(s) if and oaly if H
% w,,-lantlv”,-o for soms k</. The event "obssrvation by port j of resetting of
‘i mp-!lopbyponktothchtt"cﬂs)l!andonlylfwk-Sandv”‘-lfouom'kq.

Note that with this definition of the event sets E(s) no "observation by port j of ;.,
start of transmission by port k" and "observation by port j of end of transmission by port G

] A" can occur simultsoeously. To see this, let k</</. Suppose that port k ends
1 transmission of a packet at time ¢ and that port / starts transmission of a packet at time
5 R
% £ = ¢4 T(k,)). Then the event "observation by port j of end of transmission by port k N

: =
& and start of transmission by port /" is scheduled at time ¢ and (since 2= 1 and wy = 3 v
where / is between k and ;) the event "observation by port / of end of transmission by §‘
“-.: . s
R port k" (which was scheduled at time 1) ceases to be scheduled at time ¢\ '
: The distribution functions of new clock times for events €EN(sse) are as :

follows. If ¢ = "end of transmission by port j," then the clock setting distribution

: , function F(x;s'.¢ ,s.¢) - P[_L,s.xl. If ¢ ="end of wait for R(/) + T." then the clock

% setting distribution function F(xis'€.5,6") = 1ips o ((x). If ¢ = "setting (to 1) of =
"‘;' flip-flop by port /," then the clock setting distribution function F(xis',¢ s.6') = P{d <x}.
': If ¢ = "observation by port / of‘ start of transmission by port &," then the clock setting E,,
3 distribution function F(xis'.ese) = lrap.a®- It ¢ = "observation by port j of end ;
e of transmission by port &, then the clock setting distribution function =
. F(xis' ' s0) = Yrapm™)- If ¢ = "observation by port j of end of transmission by E-;
" port k and start of transmission by port /, then the clock setting distribution -:“‘
¥ Fxis'sd' ') = 11y (1), 1 ¢ = "observation by port J of setting of flip-flop by port
k t0 the left," then the clock setting distribution function F(xis'se' ) = 1ipq, 5. (3). ':';
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a1

If ¢ = "obssrvation by port j of resetting of flip-flop by port k to the left,” then the

 clock seting distribution function  F(xs's¢ se)) = 1001 ().

As an application of Propositions (2.11) and (2.13), take

g = (42,...,2;0:0,1,...,1;0,0,1,...0,1,....1). Let ¢’ = "end of transmission by port 1" and

§* = (3. wpizi1,... V) € 5:v, ; = O fOr /= 23,....N] 50 that T, is the mth time at
which port 1 ends transmission, #20. mm;wwa.mm
each other port / having Gbeerved the resetting of port 1°s flip-flop, haviag a packet
queved for transmission, and having completed the R() + T wait at time T, i
X(T,) = 5, Obsarve that

’

a9 T,-T, = Ay + R(1) + T+ D, + Ly,

where L, is distributed as Ly, 4,, is distributed as 4, snd D, is a nonasgative random
varisbis. Provided that the distribution of L, is NBU, it can be shown that

N
EiD,} s T EIL)

- jud
s0 that
~ N
(3.10) BT, - T} sEA) + R+ T+ SEIL)<w
Jet
and therefqre T,<m 8.5,

mz:umnmnumr._,mmlmwaamcn
that 5* = . Lot o) = "setting of flip-flop by port 1" Per s* = (v*s*u* s € 5%, ot
Ko*) = :wf =4) st It B*G*) = (0,6 86 Ks")) 10 thet B* = foy,...ax). Take
By L AMD + D) for ol 5*¢8" o8 =13, . 0("). Asume that the
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 dlsgribmtion of 4, is NBU and that

3= Playe RO + TS Ly} >0,

J= 230N, It follows that - -

; ' S $=PlA,+ R()+ TS Ly, j=23,..N}>0
| N
20 that N ‘ ‘
8:s") = P{A, +R()+Ts L, Y 5 EY)
| ot
1 Thea PURT) = ylod =1 "
# A transition of the process {X(/):r20} defined by Equation (3.8) to state s, can
occur when event ¢ s thi trigger event only if ¢ occurs in state "
m
s =(32,..2:01,...,1:0,1,....1) and in this case the set O(syis’se’) = ¢. Sincs Equation S

; (2.15) Bolds snd PIX(T,) = sy 1.0.} = 1, the successive times T, at which ¢ triggers a s
transition (in state s°) to state s, are stopping times and regeneration points for the
process {X():120}. The expected time between these regeneration points is finite by X
Equation (3.10). E

(3.11) EXAMPLE (Slotted ring). Consider s ring network having a fixed number, X, of s
equal size slots, and a fixed number of equally spaced ports, labelled 1,2,....N in the
¢ direction of signal propagation; see Figure 3. At each port constant (slot size) leagth P

message packets arrive according to a random process and queue externally. The Y

propagation delay from one port to the next is a positive constant, R. We assums that
the oumber of ports, N, is s multiple of X and (so0 that thers is no loss of utilization due . {___:
to "saused bits") that the time to transmit a message packet is equal to NR/X. The lead

"full/empty” (#/E) bis maintsins the status of each slot. A port holds & slot from the e

| o o kA
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N
2 '; ~ time that it begins filling the slot until it releases the slot. Subject to the restriction that i
‘ no port can hold more than one slot simultaneously, a port that has a packet queued for .—
2y transmission and observes the status bit of an empty slot sets the bit to 1 ("full") and e
pou Y
starts transmission. Transmission ends when the slot contains the entire packet. When Ej
N e
‘ the status bit of the filled slot propagates back to the sending port, it resets the bit to 0 g
’ ("empty") and releases the slot. The port releases the slot even if it has another packet »
poik
queued for transmission. This ensures that all ports have an opportunity to transmit. i'--
" Assume that message packets arrive at individual ports randomly and independently of
each other; i.e., the time from end of transmission by port j until the arrival of the next
A packet for transmission by port j is a positive random variable, 4 with finite mean. i
\J Note that there is at most one packet queued for transmission at any time at any
> . -:-,,:4
= particular port. B
"" o
e s
N N
o, Ny
Fhe) L'.f:
s (3.12) X()) = (Z,(0),... . Zp(0): My (). M ); Ny (0),....Nx(D), o
; b
_‘: where <
2 £
_ 1 if there is a packet queued for transmission at port j at time ¢ ,
g z ‘) - » -
2 £ 0 otherwise .
2y 3
2 N
-3' fori=1.2,..,K

J if port j holds slot i at time ¢

LRI y vy

:( M. ‘(l) - , X
- 0 otherwise "
" ".~ Ni(r) = jif at time 7 the status bit of slot / is propagating to port j, j = 1,2,...,N. For any 3
B -
N i (1sisk) the vector (Z,(1),....Zp(0): M (8),....Mg();iN(1)) contains the same information =
&
b as the vector X(s). Incorporation of all the components N(1),....Nx(s) into the state =
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vector facilitates generation of the process.

The process {X(f):tzO) defined by Equation (3.12) is a gsmp with a finite state
space, S, and event set, E. The events in the set E are: "observation of status bits by
ports" and "arrival of packet for transmission by port ;" j=12..N. Let
s = (2),.... 2N My myiny,.. i) €S, The event "observation of status bits by
ports" € E(.lr) for all s€S. The event "arrival of messsage for transmission by p. .t
J'€E(s) if and only if z;=0 and for each i either (i) m;sj or (i) m; = j and
n;-1 = j-1 + I (mod N) for some integer / such that N/K<I<N. Note that the ends of
transmission coincide with the occurrence of particular "observation of status bits by
ports" events. Suppose, for example, that there are N = 4 ports and K = 2 slots and that
s = (0,0,0,0;1,0;3,1); i.e., port 1 is transmitting a packet in slot 1, slot 2 is empty, the
status bit of port 1 is propagating to port 3, and the status bit of slot 2 is propagating to
port 1. Then the occurrence of the event "observation of status bits by ports” in state s

corresponds to an end of transmission by port 1.

In a slotted ring with N = 4 ports and X = 2 s|ots, take s;, = (0,1,0,1;1,3;2,4). Let
¢ = "observation of status bits by ports” and §* = {(2,,2,2,,2,:0.m,:1,3) € 5} so that T,
is the nth time at which port 1 observes the status bit of slot 1 and slot 1 is empty, #20.
Suppose that the distribution of 4 y is NBU and that P{4 ; < R}=1, j=12,.,N. Then
P{X(T,) = sy} = O for all n21 if X(0) = (0,1,0,1;0,3;2,4). Using arguments similar to
those in th'e proof of Proposition (2.11) it can be shown that if the distribution, F of 4,
is NBU and F(b)-F(a)>0 for all 0<a<d<m, then P{X(T,) = s, i.0.} = 1.
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4. CONCLUDING REMARKS
It is mﬁmu possible to establish recurrence results under weaker positivity

assumptions than those required by hypothesis (ii) of Proposition (2.11). For exsmple,
in the token ring model of Example (3.1), P{X(T,) = 5 i.0.} = 1 if the distribution of 4,
is NBU and PMISRJ * b RN!>0.
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APPENDIX et
Let §X():120} be a Gssr with finite state space, S, and event set, E. Recall that [, is vay
N the time of the ath state transition snd that §, = X({,) is the state of the system at time fﬁ;
_, $u» 720. Also recall that C, is the vector of clock readings at time {, and that C,, is the -
] Y
ith coordinate of the vector C, for ¢,€ E(S,). Denote by i, = i'(S, ,,C, ,) the index of
Y [
$ the nth trigger event and let 7, = {i:e;€ E(S,)). fors
; Lot 19813, € S 804 €. € E with pl;iey ,0)>0. Then the joint event 33
U1 Xy =s.a= o0 XByy) = 5,4, o= e ror o= ez X(0) = 5} -
is equivalent to the joint event specified by the inequalities
% | .
. . .
: (4.2) Cm;" $ Cpp (€1 - iy, 1} 20d m = 0,1,...,n-1
in conjunction with the equations
, (A.’) X({k) - Sk- ’k' k= 0.1....,n.

U1, =iy, ). wewrits C_ o <e.

nel

.
- “..
.
e
e
v M
J
AR
e
iee,
LA
b .:-
'~ b ".
.

We assume throughout that £(s,) is the set of active events at time ¢ = 0 and that all

Ytid

1)
[)
AR

: sctive clocks are reset at time ¢ = 0; i.e.,

-
1d

o
Tempe
W X Y

’

e .
o 3
) Te"e’s
‘. v
.. D
wealy s

P{Cy, < x} = F(xis',e;8,0)

T UAPN
PN

ad® ¢

¥

for some 3s'€S and e€E (dependent on /), ¢€E(sy). In addition, we define
Na,:0, 12,) = E(sg) form = 0.
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Next obesrve that if ¢,€ O(s,:s, ,.¢,) 30 that C, , is an old clock reading, then -
e Coi®Crui~ D G2 b,
. mi o Tmd | *§. kigey %
5 where %, is the Iatest time prior to 3, st which the clock associated with event ¢, was set. '.,
3 P
-f This implies that any old clock reading C, ; appearing in Equation (4.2) can be expressed "1:2‘

in terms of one or more Cmy With cjéﬂ(:.;:*,.c;) and m<k. Replacing in this manner
all old clock readings appesring in Equthi (4.2) by expressions which involve only new

P80

clock readings, we obtain an equivalent system of inequalities which, in conjunction with

N

Equation (4.3), we denote by ¥,. We call ¥, the canonical representation of the jolnt

event

b g

':‘._:'4 RS

{XGD = e €)= €0 Xy g) = 8y, €0y = 07 s €] = 0, XOO) = s},

FOL L

(4.4) LEMMA. Let 15/y8y5...8/x,)Sn such that Mo is, 1.6, )04, k = 1.2,....0a).

Select ¢, € N("fk"ir"';t) and let

1 s
ST
[RA SR

= O, = {8, + Cp . > L k= 12,Km).
: Either the set of inequalities {#,, ¥,} is inconsistent or there exists ¥, ¥, such that (i) F_‘
; ~ 2!
! {9,, ¥,} and {¥,, ¥,} are equivalent, (ii) no random variable C, iy 10 9, sppears in &, B
.y and (iif) the random varisbles in ', are mutually independent. "'-:E
y e
% |
] -5:".1
9 Proof: For fixed k, observe that the variable C, , appears only in thoss inequalities in -:
N ¥, corresponding to state transitions at times :j.. :,M.....t,,. Thers are two cases to
‘23 : ' : "o
o cousider. &
2 | N
b b
; N‘
30N
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Case (). For some & and j,siga-1, ¥, contains the inequalities
o -1
'(CM - 2 CM:“) < '(Cl"), i€ I’ - {‘k"
mejy o :

whcxi ¥(-) denotes 'an,expuuidn written in canonical form. By the structure of the asme

thil means that

| M
w(c, ) -"’(C;.J,, - -?h cﬂ-‘:ot)

which implies that '
WCu, 0= 904 3, Cui) = Hod £ 90
and contradicts the corrgspondin; lnequlity in 9,

Cass (ii). For every &,

| R
(4.5) €, ) < q(c, s ...% "...:;‘.)' I = fodgogoot-l.
-k

This is equivaient to
]

'(cl»‘. + ’Jk) > '(‘ h + n?]. cll.‘:,.) - '““.1). = ngg‘q.p---oPl-

mmny.acmgyk)mndmm.qmimumpluu,mmumy
'(cfh‘k +{ j.) b ((/)
which is aa element of ¥,. Since the only inequalities in ¥, which contaia the rendom

nrhhhc,“.mthouhsquuuu.ﬂ.thmwdmbm'.lﬂmnm
(for esch &) the inequalities in Equation (4.5). Note that since the caly C,, variebles
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that the random variables in §, are mutually independent. O
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(4.6) LEMMA. Let s*eS* and XgumeroX ,cs Under the conditions of Proposition
(2.11), |

L]

RN

iy
e

P(S.*(J*) * A,f_.-‘(l"‘)' sTy + RGs7) k= 1.2,....k(s*);
nf.’) -st, RT_4) - x40 X(Tg) = x5}

) LA o o
SR ol

)

28 P{X(T:) -s?, X(T") - x;_l,...X(T.) - xp}-

‘

4 0 o W
L2 kK P
* . -‘-!e_l.'.'

T

Uy = {x"*"'-‘“ 1"“.-1""‘"0’ %o}

s 4 ' ﬁi”‘é"‘""': 3

nlln"‘;l- 13,...;&:&(mu-)mu.um.mamrn

. B RN
ARV

Ll 2 SR80 A4
L pt

4 *
2
e

W
4% A

e
; .‘2,"10‘ * o

Vo= 100 = e iin) = 07, s €1 = 040 X(O) = xg},

whers [y, = 73 and there aslet 1,C..<lyy such that op = &', 5y €57, 3y =3, and
(]

R AR A e Y

sither eye’ or 5, f S ﬁndlhll,. Also let ¥, ,, be the canonical representation of the
joint event V. Next consider the joint event

IRy )
w ot b,
T <4 F

{S“(:’) +A,6N ST+ Ru(c’)'. k= 12,..k(s*):U,}

H
L4
P

1L

N 2,0 =717, thea the vacuous statement !lu(:*)ml can be written as
18,00%) ¢ 4,,0" > TT). Ut 8, ,G")<T], thea S, ,(s*) + 4,,*)>T] since 4,,(*)
is by definition the elosk reading for sn event that is active at time 7). Thus, the joint
ovents |

';'

()

palelify el
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3 oi‘_'? jl‘x :
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“n (BaaU™) ¢ 4,67 ST ¢ R (1) 2 = 12, 4(s):U,}
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(4.8 {5.40" + 4,,(.’) > 1:' + R (),
S # A% > T k= 12, kYN0 }
are equivalent.

Now observe that for every sequence ¥, of states and trigger events, S, ,(s*) corresponds
to some Sy, ;) 304 T7 to some {,, . Also, 4, ,(s*) correspoods to some Cy, . 410 as),

e PP U TRRT PRV *-.t""’ corresponds to  some
R ma(s%). Sincs U, is the disjoint union of the events V), wo can combine the above

results to obtain |

(4.9) f{s;‘,(:*) + A, (%) 5‘1;’ + R ys*), ko= 12, k(s ) UL}

- ; P{Cxinsrmtasy % Simy = Sxints + Reama(s™)s

Criarrmtar) > Sum) = Singy ® = 1204610, o},
where all terms of probability zero are excluded from the sum. By Lemma (4.4), we can
replace ¥/, ) by W), ) without altering the value of the sum.
Setting

m)-l Kia k)t
Zumxinn) = ¥pim - Srians) = '( Z i E‘ )

sad denoting the set of random variables appearing in the cancaical repressatation
O ind = nasd) ¥ VG ySnsany)s we o0 wrtte
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"‘Ww By oninid ¥ .m' a0%)
: Coarrationd , 2> T sinrr k= l.z*..#(.*a#l'ma;l.-

0 L sais) + feuanre
s> TR £ = 130 My g 0 10,
where Fy and F are wm, et Mook

sad {feﬂ‘)“w k= 1.2.-. e} mmﬁnly ‘Using hypothesis (i) of
Proposition (z.m m the fact that the random varisbles

!c,,,,m,.k -12.. .ko’ndomtmhl'wmmm |

’k'mwu) ¢ zmm“’ * 'm -
Chimtimtias) > zﬂa).llaﬂ("" k=12, oy e}

w@) f’i Coe N
- ﬂ [’Wmm» s zmw.m“) * et
Cxiamrmns) > TumnanON] P8 )}

kG*)

2 *ﬂ‘ [PIChmmr sy 'mu'

PICKan munr) > TimniaryOt] PL® ()}

- '{CW) 3 "“‘,... ' X l.2....,k(s"')}
"f"wmu.» > Zgariany b = 120 A ()},

Uﬂ‘ hypothesls (ii), substituting the l’l‘ht hand side into Equation (4.10) and
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P{Criarsmiar € Spua * Spas * Reynrar
! ' u.ll)‘ . Cm,)fm‘) fwk - 1.2,. '*('+)"‘M}

Fz | 2o {"mwm> ‘m.u) * Sniapy k= 12, k()W }
‘ Substitneieg Equation (4,;1) mw,.aqgiuon‘(4.9)m using Lemma (4.4),
ISt + 4,0 s T3+ Roalst) k=12, ..k(:"). U}
2 ; . "ii‘gc,‘,, ,,";, ,,4’,,,,5 '>"i;“;,-*i t M, = 12, k(s*): ¥}
-3 P{S,*(J”') + .4,,‘,‘(:"‘) > 1"’ k=12, :"‘).v.}

- 8 PLU,}.

The last equality follows by the same reasoning that leads to the equivalence of the

events in Equations (4.7) and (4.8). O
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